IBM DataPower Operations Dashboard v1.0.18.0

A newer version of this product documentation is available.

You are viewing an older version. View latest at IBM DPOD Documentation.

Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 41 Next »

Overview

Federated architecture best fits customers that execute high load (thousands of transactions per seconds) in their gateways, where the vast majority of the transactions is executed on-premise. 

The cell environment implements the federated architecture by distributing DPOD's Store and DPOD's processing (using DPOD's agents) across different federated servers.

The cell environment has two main components:

  • Cell Manager - a DPOD server (virtual or physical) that manages all Federated Cell Members (FCMs) as well as provides central DPOD services such as the Web Console, reports, alerts, etc.
  • Federated Cell Member (FCM) - a DPOD server (usually physical with local high speed storage) that includes Store data nodes and agents (Syslog and WS-M) for collecting, parsing and storing data. There could be one or more federated cell members per cell.

See the following diagram:

The following procedure describes the process of establishing a DPOD cell environment.

Prerequisites

  1. DPOD cell manager and federated cell members must be with the same version (minimum version is 1.0.10.0).
  2. DPOD cell manager can be installed in both Appliance Mode or Non-Appliance Mode with Medium Load architecture type, as detailed in the Hardware and Software Requirements. The manager server can be both virtual or physical.
  3. DPOD federated cell member (FCM) should be installed in Non-appliance Mode with High_20dv with High Load architecture type, as detailed in the Hardware and Software Requirements.
  4. Each cell component (manager / FCM) should have two network interfaces:
    1. External interface - for DPOD users to access the Web Console and for communication between DPOD and Monitored Gateways.
    2. Internal interface - for internal DPOD components inter-communication (should be a 10Gb Ethernet interface).
  5. Network ports should be opened in the network firewall as detailed below:

From

To

Ports (Defaults)

Protocol

Usage

DPOD Cell Manager

Each Monitored Device

5550 (TCP)

HTTP/S

Monitored device administration management interface

DPOD Cell Manager

DNS Server

TCP and UDP 53

DNS

DNS services. Static IP address may be used.

DPOD Cell Manager

NTP Server

123 (UDP)

NTP

Time synchronization

DPOD Cell Manager

Organizational mail server

25 (TCP)

SMTP

Send reports by email

DPOD Cell Manager

LDAP

TCP 389 / 636 (SSL).

TCP 3268 / 3269 (SSL)

LDAP

Authentication & authorization. Can be over SSL.

DPOD Cell ManagerEach DPOD Federated Cell Member9300-9305 (TCP)ElasticSearchElasticSearch Communication (data + management)

NTP Server

DPOD Cell Manager

123 (UDP)

NTP

Time synchronization

Each Monitored Device

DPOD Cell Manager

60000-60003 (TCP)

TCP

SYSLOG Data

Each Monitored Device

DPOD Cell Manager

60020-60023 (TCP)

HTTP/S

WS-M Payloads

Users IPs         

DPOD Cell Manager

443 (TCP)

HTTP/S

IBM DataPower Operations Dashboard Web Console

Admins IPs         

DPOD Cell Manager

22 (TCP)

TCP

SSH

Each DPOD Federated Cell MemberDPOD Cell Manager9200, 9300-9400ElasticSearchElasticSearch Communication (data + management)

Each DPOD Federated Cell Member

DNS Server

TCP and UDP 53

DNS

DNS services

Each DPOD Federated Cell Member

NTP Server

123 (UDP)

NTP

Time synchronization

NTP Server

Each DPOD Federated Cell Member

123 (UDP)

NTP

Time synchronization

Each Monitored Device

Each DPOD Federated Cell Member

60000-60003 (TCP)

TCP

SYSLOG Data

Each Monitored Device

Each DPOD Federated Cell Member

60020-60023 (TCP)

HTTP/S

WS-M Payloads

Admins IPs         

Each DPOD Federated Cell Member

22 (TCP)

TCP

SSH

Cell Manager Installation

Prerequisites

  • DPOD cell manager can be installed in both Appliance Mode or Non-Appliance Mode with Medium Load architecture type, as detailed in the Hardware and Software Requirements. The manager server can be both virtual or physical.

Installation

Install DPOD as described in one of the following installation procedures:

As described in the prerequisites section, the cell manager should have two network interfaces.

When installing DPOD, the user is prompted to choose the IP address for the Web Console - this should be the IP address of the external network interface.

Federated Cell Member Installation

The following section describes the installation process of a single Federated Cell Member (FCM). User should repeat the procedure for every FCM installation.

Prerequisites

  • DPOD federated cell member (FCM) should be installed in Non-appliance Mode with High_20dv with High Load architecture type, as detailed in the Hardware and Software Requirements.
  • The following software packages (RPMs) should be installed: iptables, iptables-services, numactl
  • The following software packages (RPMs) are recommended for system maintenance and troubleshooting, but are not required: telnet client, net-tools, iftop, tcpdump

Installation

DPOD Installation

As described in the prerequisites section, the federated cell member should have two network interfaces.

When installing DPOD, the user is prompted to choose the IP address for the Web Console - this should be the IP address of the external network interface (although the FCM does not run the Web Console service).


  • After DPOD installation is complete, the user should execute the following operating system performance optimization script:
/app/scripts/tune-os-parameters.sh


User should reboot the server for the new performance optimization to take effect.

Preparing Cell Member for Federation

Preparing Mount Points

The cell member is usually a "bare metal" server with NVMe disks for maximizing server throughput.

Each of the Store's logical node (service) will be bound to a specific physical processor, disks and memory using NUMA (Non-Uniform Memory Access) technology.

The default cell member configuration assumes 6 NVMe disks which will serve 3 Store logical nodes (2 disks per node).

The following OS mount points should be configured by the user before federating the DPOD cell member to the cell environment.

We highly recommend the use of LVM (Logical Volume Manager) to allow flexible storage for future storage needs.


Empty cells in the following table should be completed by the user, based on their specific hardware:

Store NodeMount Point PathDisk BayDisk SerialDisk OS PathCPU #
2/data2



2/data22



3/data3



3/data33



4/data4



4/data44



How to Identify Disk OS Path and Disk Serial
  1. To identify which of the server's NVMe disk bays is bound to which of the CPUs, use the hardware manufacture documentation.
    Also, write down the disk's serial number by visually observing the disk.
  2. In order to identify the disk OS path (e.g.: /dev/nvme01n) and the disk serial, install the NVMe disk utility software provided by the hardware supplier. For example: for Intel-based NVMe SSD disks, install "Intel® SSD Data Center Tool" (isdct).
    Example output of the Intel SSD DC tool:

    isdct  show -intelssd
    
    - Intel SSD DC P4500 Series PHLE822101AN3PXXXX -
    
    Bootloader : 0133
    DevicePath : /dev/nvme0n1
    DeviceStatus : Healthy
    Firmware : QDV1LV45
    FirmwareUpdateAvailable : Please contact your Intel representative about firmware update for this drive.
    Index : 0
    ModelNumber : SSDPE2KE032T7L
    ProductFamily : Intel SSD DC P4500 Series
    SerialNumber : PHLE822101AN3PXXXX
    
    
  3. Use the disk bay number and the disk serial number (visually identified) and correlate them with the output of the disk tool to identify the disk OS path.
Example for Mount Points and Disk Configurations
Store NodeMount Point PathDisk BayDisk SerialDisk OS PathCPU #
2/data21PHLE822101AN3PXXXX/dev/nvme0n11
2/data222
/dev/nvme1n11
3/data34
/dev/nvme2n12
3/data335
/dev/nvme3n12
4/data412
/dev/nvme4n13
4/data4413
/dev/nvme5n13
Example for LVM Configuration
pvcreate -ff /dev/nvme0n1
vgcreate vg_data2 /dev/nvme0n1
lvcreate -l 100%FREE -n lv_data vg_data2
mkfs.xfs -f /dev/vg_data2/lv_data

pvcreate -ff /dev/nvme1n1
vgcreate vg_data22 /dev/nvme1n1
lvcreate -l 100%FREE -n lv_data vg_data22
mkfs.xfs /dev/vg_data22/lv_data


/etc/fstab file:

/dev/vg_data2/lv_data    /data2                   xfs     defaults        0 0
/dev/vg_data22/lv_data   /data22                   xfs     defaults        0 0
/dev/vg_data3/lv_data    /data3                   xfs     defaults        0 0
/dev/vg_data33/lv_data   /data33                   xfs     defaults        0 0
/dev/vg_data4/lv_data    /data4                   xfs     defaults        0 0
/dev/vg_data44/lv_data   /data44                   xfs     defaults        0 0
Example for the Final Configuration for 3 Store's nodes

This example does not include other mount points needed, as describe in Hardware and Software Requirements.


# lsblk

NAME                MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
nvme0n1             259:0    0   2.9T  0 disk
└─vg_data2-lv_data  253:6    0   2.9T  0 lvm  /data2
nvme1n1             259:5    0   2.9T  0 disk
└─vg_data22-lv_data 253:3    0   2.9T  0 lvm  /data22
nvme2n1             259:1    0   2.9T  0 disk
└─vg_data3-lv_data  253:2    0   2.9T  0 lvm  /data3
nvme3n1             259:2    0   2.9T  0 disk
└─vg_data33-lv_data 253:5    0   2.9T  0 lvm  /data33
nvme4n1             259:4    0   2.9T  0 disk
└─vg_data44-lv_data 253:7    0   2.9T  0 lvm  /data44
nvme5n1             259:3    0   2.9T  0 disk
└─vg_data4-lv_data  253:8    0   2.9T  0 lvm  /data4

Preparing Local OS Based Firewall

Most Linux-based OS uses a local firewall service (e.g.: iptables / firewalld).

Since the OS of the Non-Appliance Mode DPOD installation is provided by the user, it is under the user's responsibility to allow needed connectivity to and from the server.

User should make sure needed connectivity detailed in Network Ports Table is allowed on the OS local firewall service.

When using DPOD Appliance mode installation for the cell manager, local OS based firewall service is handled by the cell member federation script.

Cell Member Federation

In order to federate and configure the cell member, run the following script in the cell manager once per cell member.

For instance, to federate two cell members, the script should be run twice (in the cell manager) - first time with the IP address of the first cell member, and second time with the IP address of the second cell member.


Important: The script should be executed using the OS root user.

/app/scripts/configure_cell_manager.sh -a <internal IP address of the cell member> -g <external IP address of the cell member>
For example: /app/scripts/configure_cell_manager.sh -a 172.18.100.34 -g 172.17.100.33
Example for a Successful Execution
 /app/scripts/configure_cell_manager.sh -a 172.18.100.34 -g 172.17.100.33

2018-10-01_00-31-56 INFO Cell Configuration
2018-10-01_00-31-56 INFO ===============================
2018-10-01_00-31-58 INFO 
2018-10-01_00-31-58 INFO Log file is : /installs/logs/cell_manager_configuration-2018-10-01_00-31-56.log
2018-10-01_00-31-58 INFO 
2018-10-01_00-31-58 INFO Adding new cell member with the following configuration :
2018-10-01_00-31-58 INFO Cell member internal address 172.18.100.34
2018-10-01_00-31-58 INFO Cell member external address 172.17.100.33
2018-10-01_00-31-58 INFO Syslog agents using TCP ports starting with 60000
2018-10-01_00-31-58 INFO Syslog agents using TCP ports starting with 60000
2018-10-01_00-31-58 INFO Wsm agents using TCP ports starting with 60020 
2018-10-01_00-31-59 INFO 
2018-10-01_00-31-59 INFO Please choose the IP address for the cell manager server internal address followed by [ENTER]:
2018-10-01_00-31-59 INFO 1.) 172.18.100.32
2018-10-01_00-31-59 INFO 2.) 172.17.100.31
1
2018-10-01_00-32-31 INFO Stopping application ...
2018-10-01_00-33-22 INFO Application stopped successfully. 
root@172.18.100.34's password: 
2018-10-01_00-37-24 INFO Cell member configuration ended successfully.
2018-10-01_00-37-29 INFO Stopping application ...
2018-10-01_00-38-17 INFO Application stopped successfully. 
2018-10-01_00-38-17 INFO Starting application ...
2018-10-01_00-40-14 INFO Application started successfully.

Note that the script writes two log file, one in the cell manager and one in the cell member. The log file names are mentioned in the script's output.

Example for a Failed Execution
 /app/scripts/configure_cell_manager.sh -a 172.18.100.34 -g 172.17.100.33

2018-10-01_00-11-43 INFO Cell Configuration
2018-10-01_00-11-43 INFO ===============================
2018-10-01_00-11-45 INFO 
2018-10-01_00-11-45 INFO Log file is : /installs/logs/cell_manager_configuration-2018-10-01_00-11-43.log
2018-10-01_00-11-45 INFO 
2018-10-01_00-11-45 INFO Adding new cell member with the following configuration :
2018-10-01_00-11-45 INFO Cell member internal address 172.18.100.34
2018-10-01_00-11-45 INFO Cell member external address 172.17.100.33
2018-10-01_00-11-45 INFO Syslog agents using TCP ports starting with 60000
2018-10-01_00-11-45 INFO Syslog agents using TCP ports starting with 60000
2018-10-01_00-11-45 INFO Wsm agents using TCP ports starting with 60020 
2018-10-01_00-11-45 INFO 
2018-10-01_00-11-45 INFO Please choose the IP address for the cell manager server internal address followed by [ENTER]:
2018-10-01_00-11-46 INFO 1.) 172.18.100.32
2018-10-01_00-11-46 INFO 2.) 172.17.100.31
1
2018-10-01_00-12-17 INFO Stopping application ...
2018-10-01_00-13-09 INFO Application stopped successfully. 
root@172.18.100.34's password: 
2018-10-01_00-14-15 ERROR Starting rollback
2018-10-01_00-14-19 WARN Issues found that may need attention !!
2018-10-01_00-14-20 INFO Starting application ...
2018-10-01_00-17-36 INFO Application started successfully.

In case of a failure, the script will try to rollback the configuration changes it made, so the problem can be fixed before rerunning it again.

Cell Member Federation Post Steps

NUMA configuration

DPOD cell member is using NUMA (Non-Uniform Memory Access) technology. The default cell member configuration binds DPOD's agent to CPU 0 and the Store's nodes to CPU 1.
If the server has 4 CPUs, the user should edit the service files of nodes 2 and 3 and change the bind CPU to 2 and 3 respectively.

Identifying NUMA Configuration

To identify the amount of CPUs installed on the server, use the NUMA utility:

numactl -s

Example output for 4 CPU server :

policy: default
preferred node: current
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 
cpubind: 0 1 2 3
nodebind: 0 1 2 3
membind: 0 1 2 3
Alter Store's Node 2 and 3 (OPTIONAL - only if the server has 4 CPUs)

The services files are located on the directory /etc/init.d/ with the namea MonTier-es-raw-trans-Node-2 and MonTier-es-raw-trans-Node-3.

For node MonTier-es-raw-trans-Node-2
OLD VALUE : numa="/usr/bin/numactl --membind=1 --cpunodebind=1"
NEW VALUE : numa="/usr/bin/numactl --membind=2 --cpunodebind=2"

For node MonTier-es-raw-trans-Node-3
OLD VALUE : numa="/usr/bin/numactl --membind=1 --cpunodebind=1"
NEW VALUE : numa="/usr/bin/numactl --membind=3 --cpunodebind=3"

Cell Member Federation Verification

After a successful execution, you will be able to see the new federated cell member in the Manage → System → Nodes page.
For example, after federating cell member the page should look as follows:

Also, the new agents will be shown in the agents list in the Manage → Internal Health → Agents page.
For example, if the cell manager has two agents and there is a federated cell member with additional four agents, the page will show six agents:

Configure the Monitored Device to the Federated Cell Member Agents

It is possible to configure entire monitored device or just a specific domain to the federated cell member's agents.

To configure monitored device / specific domain please follow instructions on Adding Monitored Devices.



  • No labels