Overview
Physical DPOD Cell Members that are required to process high transactions per second (TPS) load include 4 CPU sockets and NVMe disks for maximizing server I/O throughput.
DPOD is using NUMA (Non-Uniform Memory Access) technology to bind each of the Store's logical nodes to specific physical processor, disks and memory in a way that will minimize the latency of persisting data to disks.
Note: If the cell member server does not have 4 CPU sockets or does not have NVMe disks - do not perform the steps in this document.
Enabling NUMA in BIOS
Make sure to enable NUMA in the physical server's BIOS. You may need to consult with the hardware manufacturer documentation on how to achieve that.
Note: The number of NUMA nodes configured in BIOS should be 4 (should match the amount of physical CPU sockets in the server).
Some servers allow increasing the NUMA nodes number (e.g. double the number of CPU sockets), which is not suitable for DPOD.
Installing RAM Modules
Use the hardware manufacturer documentation to install the same amount of RAM for each one of the CPUs of the physical server.
Verify NUMA
Once NUMA has been enabled in BIOS and RAM modules have been installed, verify
...
the installation using the following command:
...
Code Block | ||||
---|---|---|---|---|
| ||||
numactl -s | grep cpubind
Expected output for 4 CPU sockets cell members:
cpubind: 0 1 2 3
|
Connecting Disks
Same number of disks (2 or 3) on each CPU bus - 1,2,3
Required information
The following table contains the list of OS mount points that should be configured along with additional information that must be gathered before federating the DPOD cell member to the cell environment.
Please copy this table, use it during the procedure, and complete the information in the empty cells as you follow the procedure:
...
...
* Lines marked with asterisk (*) are relevant only in case DPOD sizing team recommends 9 disks instead of 6 disks per cell member. You may remove these lines in case you have only 6 disks per cell member.
Identifying disk bays and disk serial numbers
To identify which of the server's NVMe disk bays is bound to which of the CPUs, use the hardware manufacture documentation.
Write down the disk bay as well as the disk's serial number by visually observing the disk.
Identifying disk OS paths
...
/app/scripts/gather_nvme_info.sh |
Expected output:
Code Block | ||||
---|---|---|---|---|
| ||||
nvme -list Expected output: Node SN Model 2023-12-19_15-16-52: INFO Gathers NVME Information 2023-12-19_15-16-52: INFO ======================== 2023-12-19_15-16-52: INFO Log file is /tmp/gatherNvmeInfo_2023-12-19_15-16-52.log 2023-12-19_15-16-52: INFO Identifying disk OS paths... 2023-12-19_15-16-52: INFO Identifying disk slot numbers... 2023-12-19_15-16-55: INFO Creating output... Serial Number | Disk OS Path | Disk Speed | PCI Slot Number | NUMA Code (Cpu #) Namespace Usage Format FW Rev ---------------- -------------------- ---------------------------------------- --------- -------------------------- ---------------- -------- PHLE8221029C3P2EGN | /dev/nvme0n1 PHLE8XXXXXXC3P2EGN SSDPE2KE032T7L 1 3.20 TB / 3.20 TB| 8GT/s 512 B + 0 B QDV1LV46 /dev/nvme1n1 PHLE8XXXXXXM3P2EGN SSDPE2KE032T7L 1 3.20 TB / 3.20 TB 512 B + 0 B| 5d:00.0 QDV1LV46 /dev/nvme2n1 PHLE8XXXXXX83P2EGN SSDPE2KE032T7L 1 | 1 3.20 TB / 3.20 TB PHLE822100SM3P2EGN 512 B + 0 B QDV1LV46 | /dev/nvme3n1nvme1n1 PHLE8XXXXXXN3P2EGN SSDPE2KE032T7L 1 3.20 TB / 3.20 TB| 8GT/s 512 B + 0 B QDV1LV46 /dev/nvme4n1 PHLE8XXXXXX63P2EGN SSDPE2KE032T7L 1 3.20 TB / 3.20 TB 512 B + 0 B| 5e:00.0 QDV1LV46 /dev/nvme5n1 PHLE8XXXXXXJ3P2EGN SSDPE2KE032T7L | 1 3.20 TB / 3.20 TB 512 B + 0 B QDV1LV46 |
Identifying PCI slot numbers
To list the the PCI slot for each disk OS path, execute the following command and write down the PCI slot (e.g.: 0c:00.0) according to the last part of the disk OS path (e.g.: nvme0n1):
Code Block | ||||
---|---|---|---|---|
| ||||
lspci -nn | grep NVM | awk '{print $1}' | xargs -Innn bash -c "printf 'PCI Slot: nnn '; ls -la /sys/dev/block | grep nnn" Expected output: PCI Slot: 0c:00.0 lrwxrwxrwx. 1 root root 0 May 16 10:26 259:2 -> ../../devices/pci0000:07/0000:07:00.0/0000:08:00.0/0000:09:02.0/0000:0c:00.0/nvme/nvme0/nvme0n1 PCI Slot: 0d:00.0 lrwxrwxrwx. 1 root root 0 May 16 10:26 259:5 -> ../../devices/pci0000:07/0000:07:00.0/0000:08:00.0/0000:09:03.0/0000:0d:00.0/nvme/nvme1/nvme1n1 PCI Slot: PHLE822100X83P2EGN | /dev/nvme2n1 | 8GT/s | ad:00.0 lrwxrwxrwx. 1 root root 0| May2 16 10:26 259:1 -> ../../devices/pci0000:ac/0000:ac:02.0/0000:ad:00.0/nvme/nvme2/nvme2n1 PCI Slot: ae:00.0 lrwxrwxrwx. 1 root root 0 May 16 10:26 259:0 -> ../../devices/pci0000:ac/0000:ac:03.0/0000:ae:00.0/nvme/nvme3/nvme3n1 PCI Slot: c5:00.0 lrwxrwxrwx. 1 root root 0 May 16 10:26 259:3 -> ../../devices/pci0000:c4/0000:c4:02.0/0000:c5:00.0/nvme/nvme4/nvme4n1 PCI Slot: c6:00.0PHLE8221027N3P2EGN | /dev/nvme3n1 | 8GT/s lrwxrwxrwx. 1 root root 0 May 16 10:26 259:4 -> ../../devices/pci0000:c4/0000:c4:03.0/0000:c6| ae:00.0/nvme/nvme5/nvme5n1 Tip: you may execute the following command to list the details of all PCI slots with NVMe disks installed in the server: lspci -nn | grep -i nvme | awk '{print $1}' | xargs -Innn lspci -v -s nnn Tip: you may execute the following command to list all disk OS paths in the server: ls -la /sys/dev/block |
Identifying NUMA nodes
To list the NUMA node of each PCI slot, execute the following command and write down the NUMA node (e.g.: 1) according to the PCI slot (e.g.: 0c:00.0):
Code Block | ||||
---|---|---|---|---|
| ||||
lspci -nn | grep -i nvme | awk '{print $1}' | xargs -Innn bash -c "printf 'PCI Slot: nnn'; lspci -v -s nnn | grep NUMA"
Expected output:
PCI Slot: 0c:00.0 Flags: bus master, fast devsel, latency 0, IRQ 45, NUMA node 1
PCI Slot: 0d:00.0 Flags: bus master, fast devsel, latency 0, IRQ 52, NUMA node 1
PCI Slot: ad:00.0 Flags: bus master, fast devsel, latency 0, IRQ 47, NUMA node 2
PCI Slot: ae:00.0 Flags: bus master, fast devsel, latency 0, IRQ 49, NUMA node 2
PCI Slot: c5:00.0 Flags: bus master, fast devsel, latency 0, IRQ 51, NUMA node 3
PCI Slot: c6:00.0 Flags: bus master, fast devsel, latency 0, IRQ 55, NUMA node 3 |
Example of required information
This is an example of how a row of the table should look like:
...
Verifying NVMe disks speed
Execute the following command and verify all NVMe disks have the same speed (e.g.: 8GT/s):
Code Block | ||||
---|---|---|---|---|
| ||||
lspci -nn | grep -i nvme | awk '{print $1}' | xargs -Innn bash -c "printf 'PCI Slot: nnn'; lspci -vvv -s nnn | grep LnkSta:"
Expected output:
PCI Slot: 0c:00.0 LnkSta: Speed 8GT/s, Width x4, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
PCI Slot: 0d:00.0 LnkSta: Speed 8GT/s, Width x4, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
PCI Slot: ad:00.0 LnkSta: Speed 8GT/s, Width x4, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
PCI Slot: ae:00.0 LnkSta: Speed 8GT/s, Width x4, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
PCI Slot: c5:00.0 LnkSta: Speed 8GT/s, Width x4, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
PCI Slot: c6:00.0 LnkSta: Speed 8GT/s, Width x4, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt- |
Configuring mount points
Configure the mount points according to the table with all gathered information.
It is highly recommended to use LVM (Logical Volume Manager) to allow flexibility for future storage needs.
The following example uses LVM. You may use it for each mount point (replace vg_data2 with vg_data22/vg_data222/vg_data3 etc.):
Code Block | ||||
---|---|---|---|---|
| ||||
pvcreate -ff /dev/nvme0n1
vgcreate vg_data2 /dev/nvme0n1
lvcreate -l 100%FREE -n lv_data vg_data2
mkfs.xfs -f /dev/vg_data2/lv_data |
The following example is the line that should be added to /etc/fstab for each mount point (replace vg_data2 and /data2 with the appropriate values from the table):
Code Block | ||||
---|---|---|---|---|
| ||||
/dev/vg_data2/lv_data /data2 xfs defaults 0 0
|
Create a directory for each mount point (replace /data2 with the appropriate values from the table):
Code Block | ||||
---|---|---|---|---|
| ||||
mkdir -p /data2 |
Inspecting final configuration
Note |
---|
This example is for 6 disks per cell member and does not include other mount points that should exist, as describe in Hardware and Software Requirements. |
Execute the following command and verify mount points:
Code Block | ||||
---|---|---|---|---|
| ||||
lsblk Expected output: NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT nvme0n1 259:2 0 2.9T 0 disk └─vg_data2-lv_data 253:0 0 2.9T 0 lvm /data2 nvme1n1 259:5 0 2.9T 0 disk └─vg_data22-lv_data 253:11 0 2.9T 0 lvm /data22 nvme2n1 259:1 0 2.9T 0 disk └─vg_data3-lv_data 253:9 0 2.9T 0 lvm /data3 nvme3n1 259:0 0 2.9T 0 disk └─vg_data33-lv_data 253:10 0 2.9T 0 lvm /data33 nvme4n1 259:3 0 2.9T 0 disk └─vg_data44-lv_data 253:8 0 2.9T 0 lvm /data44 nvme5n1 259:4 0 2.9T 0 disk └─vg_data4-lv_data 253:7 0 2.9T 0 lvm /data4| 2 PHLE822100X63P2EGN | /dev/nvme4n1 | 8GT/s | c5:00.0 | 3 PHLE822102CJ3P2EGN | /dev/nvme5n1 | 8GT/s | c6:00.0 | 3 2023-12-19_15-16-55: INFO Output file: /tmp/gatherNvmeInfo_2023-12-19_15-16-52.csv |